Discrete Choice Models I

1 Introduction

A discrete choice model is one in which decision makers choose among a set of alternatives.! To fit within
a discrete choice framework, the set of alternatives — the choice set — needs to exhibit three characteristics:
(1) alternatives need to be mutually exclusive, (ii) alternatives must be exhaustive, and (iii) the number of
alternatives must be finite. We have already looked at various discrete choice models. For example, binary
response models and ordered response models are both types of discrete choice models. Having already
examined these specific types of discrete choice models, we are going to take a step back and think about
discrete choice models in terms of a more general framework.

1.1 Derivation of Choice Probabilities

In general, discrete choice models are usually derived in a random utility model (RUM) framework in which
decision makers are assumed to be utility maximizers.? The basic setup is the following. A decision maker,
labeled n, faces a choice among J alternatives. The decision maker obtains a certain level of utility from
each alternatives. The utility that decision maker n obtains from any alternative j is U,j, j = 1...J. This
utility is known to the decision maker but not the analyst. The decision maker chooses the alternative with
the highest utility: choose alternative ¢ if and only if U,; > U,;Vj # i. The analyst can’t observe the
decision maker’s utility. However, the analyst can observe some attributes of the alternatives, labeled ,,;V7,
and some attributes of the decision maker, labeled s,,. The analyst can also specify a function that relates
these observed factors to the decision maker’s utility. This function is denoted V;,; = V (25, 5,,)Vj and is
called representative utility.

Because there are aspects of utility that the researcher does not or cannot observe, V,,; # U, ;. As a result,
utility is decomposed as U,; = V;,; + €,;, where €,; captures the factors that influence utility but that
are not in V,,;. In effect, €,; is simply the difference between U,,; and V,,;. You can think of V,,; as the
systematic component of a decision maker’s utility and €,; as the stochastic component. The researcher
does not know €,,;Vj, and therefore treats these terms as random. The joint density of the random vector
€n = {€nl, ..., €} is denoted f(e,). With this density, the analyst can make probability statements about
the choice of the decision maker. In other words, the probability that decision maker n choose alternative i
is simply:

Pp; = Prob(Uy; > Up;Vj # 1)
= Prob(Vy; + €ni > Vij + €,V5 # 1)
= Prob(enj —€ni < Vi — ViV # 1)
(D

"Much of these notes is heavily based on Ken Train’s (2007) excellent book.
Note that this derivation does not rule out other types of behavior. In other words, discrete choice models are consistent with
utility maximization, but also other types of behavior.



This probability is a cumulative distribution i.e. the probability that each random term €,,; — €,; is below the
observed quantity V,,; — V},;. Using the density f(e,,), this cumulative probability can be written as:

P, = PI‘Ob(fnj —€ni < Vi — Vn)

= /I(Enj —€ni < Vi — an)f(ﬁn)dﬁn )

€

where I(-) is the indicator function equal to 1 when the expression in parentheses is true and 0 otherwise. As
you can see, this is a multidimensional integral over the density of the unobserved portion of utility, f(e,).

Note that you get different discrete choice models depending on how you specify this density i.e. depending
on what assumptions you make about the distribution about the unobserved portion of utility.> The integral
only takes a closed form solution for certain specifications of f(-). For example, logit and nested logit
have closed form solutions; they are derived under the assumption that the unobserved portion of utility is
distributed iid extreme value (logit) and a type of generalized extreme value (nested logit). Probit is derived
under the assumption that f(-) is multivariate normal and mixed logit is derived under the assumption that
the unobserved portion of utility comprises a part that follows any distribution desired by the analyst and a
part that is iid extreme value. With probit and mixed logit, the integral has no closed form solution and we
have to evaluate it numerically through simulation.

1.2 Identification of Choice Models
1.2.1 Only Differences in Utility Matter

Note that in all discrete choice models, the absolute level of utility is irrelevant to both the decision maker
and the analyst. If a constant is added to the utility of all alternatives, then the alternative with the highest
utility does not change. Similarly, the level of utility does not matter for the analyst. The choice probability
is P,; = Prob(Uy,; > Uy;) = Prob(Uy; — U,; > 0), which depends only on the difference in utility and
not its absolute level. The fact that only differences in utility matter has implications for the identification of
discrete choice models. In particular, it means that the only parameters that can be estimated are those that
captures differences across alternatives. This can be thought of in a number of ways.

Alternative-Specific Constants

Oftentimes, we will want to specify the observed component of utility to include a constant: V,,; = x,,;3+k;
where k; is a constant specific to alternative j. This constant captures the average effect on utility of all
factors that are not included in the model. When alternative-specific constants are included in the model,
€n; has zero mean by construction. However, since only differences in utility matter, only differences in
alternative-specific constants matter. Any model with the same difference in constants is equivalent. Put
differently, it is impossible to estimate, say, two constants in a two-alternative scenario, because an infinite
number of values of the two constants produce the same difference and hence the same choice probabilities.
As aresult, it is necessary for the analyst to set the overall level of these constants. This is typically done by

3You can think of f(e,,) as the distribution of the unobserved portion of utility within a population of people who face the same
observed portion of utility.



normalizing the value of one of the alternative-specific constants. Consider the following example with two
alternatives:

Up=aX1 +8X1 + K + e
Uy =aXs+ X2 + k3 + €2

where K — k9 = d, We can’t estimate K° and k9 separately. However, we can estimate the following
setup:

Ui=aX1+06X1+ €

Uy = aXo+ 6Xo + ko + €
where ko = d, which is the difference in the original unnormalized constants. With J alternatives, at most
J — 1 alternative-specific constants can be entered, with one constant normalized to 0. It does not matter

which constant is normalized to 0, but it does mean that all other constants have to be interpreted relative to
whichever one is set to 0.

Sociodemographic Variables

The exact same issue arises with sociodemographic variables i.e. variables relating to attributes of the
decision maker. By definition, attributes of the decision maker do not vary over the alternatives. As a result,
they can only enter the model in ways that create differences in utility over the alternatives. Consider the
following example with two alternatives:

Uy =aX, + 8X; + 6% + ¢
Uy = aXQ—i-ﬂXg-i-QgY—i-eQ

where Y is some sociodemographic variable and 69 and 69 capture the effect of this variable on the utility
of alternatives 1 and 2 respectively. We might expect that 69 # 63 i.e. that the effect of the variable differs
across alternatives. The problem is that only differences in utility matter and so we cannot estimate the
absolute levels of 69 and 9. Again, we have to normalize one of these parameters to 0. Now the model
becomes:

Uy=aX1+0X1+ ¢
Us = aXo+ 0Xo + 605 + €9

where 0 = 09 —6?. We now interpret 05 as the differential impact of the variable on the utility of alternative
2 compared to alternative 1.

Number of Independent Error Terms

Recall that the choice probabilities in a discrete choice model are:
Pni = /I(an —€ns < Vnz - Vn')f(en)den 3)
€

This probability is a .J-dimensional integral over the density of the .J error terms in €, = {€n1,..., €75}



However, we can reduce the dimension of the integral by again remembering that only differences in utility
matter. With J errors, there are J — 1 error differences. Thus, we can express the choice probabilities as:

P, = PI‘Ob(Um‘ > UnjVj 7& Z)
= PI‘Ob(Enj —€ns < Vi — anVj 7'& Z)
= PI‘Ob(Enji < Vm' — an>

= /I<€nji < Vi — Virj) 9(&ni) dén S

where €,j; = €,; — €p; is the difference in errors for alternatives i and j. €,; = {€n1i,...,€ni} is the
(J-1)-dimensional vector of error differences and g(-) is the density of these error differences. In effect,
any model specified with an error for each alternative: €,, = {€p1,. .., €, } with density f(e,) is equivalent
to a model with J-1 errors defined as €,;; = €,; — €, for any k and density g(€,y) derived from f(ey).
Because choice probabilities can always be expressed as depending only on g(€,), one dimension of the
density of f(e,) is not identified and must be normalized.

The normalization of f(e,) is dealt with in different ways. For some models, like the logit model, the
distribution of the error terms is sufficiently restrictive that the normalization occurs automatically with
the assumptions that come with using the distribution. For other models, such as probit, identification is
obtained only by specifying the model in terms of error differences i.e. in terms of ¢(-) without reference to
f(+). The bottom line is that you need to check that your model is properly identified. More on this later.

1.2.2 The Overall Scale of Utility is Irrelevant

We have already seen that adding a constant to the utility of all of the choices does not change the decision
maker’s choice. Multiplying the utility of all of the choices does not change his choice either. In other
words, the alternative with the highest utility is the same irrespective of how utility is scaled. The two
models shown below are equivalent for any A > 0.

Unj = Vaj + €ng
Unj = AVaj + Aenj
)

As a result, the analyst has to normalize the scale of utility. Typically, we normalize the scale of utility by
normalizing the variance of the error terms. This is what we did when we looked at logit and probit earlier.
The scale of utility and the variance of the error terms are directly related. When utility is multiplied by A,
the variance of each ¢,; changes by A\?: var(\e,;) = A?var(e,;). In other words, normalizing the variance
of the error terms is equivalent to normalizing the scale of utility.

Normalization with iid Errors

When the errors are assumed to be iid, then normalizing the scale is straightforward. In effect, you just
normalize the error variance to some number that is convenient. Because all the errors have the same
variance by assumption, normalizing the variance of any of them sets the variance for all of them.



Whatever we use to normalize the scale affects how we interpret the coefficients. Suppose we have the
following model: U,(L’j = TpiB+ e?Lj where the variance of the error terms is var(egj) = 02, Let’s normalize
the scale by setting the error variance to 1 as in a probit model. The model now becomes the following:

o nj

Unlj = Ty (ﬁ> + 6711]’ with var(el.) = 1. In other words, the original coefficients are divided by the

standard deviation of the unobserved portion of utility. The new coefficients g, therefore, reflect the effect
of the observed variables relative to the standard deviation of the unobserved factors.

What happens if we set the error variance to %2 = 1.64 as in a standard logit model? Well, now the

normalized model would be: Uﬂbj = Tnj <§) Vv1.64 + E}Lj with Var(e;j) = 1.64.* The difference is that

the coefficients will now be larger than in a probit model by a factor of 1/1.64. Probit coefficients can be
converted to the scale of the logit coefficients by multiplying them by /1.64.°

Normalization with Correlated Errors

When errors are correlated over alternatives, normalizing for scale becomes more difficult. In the previous
case of normalization with iid errors, we talked about setting the scale of utility. However, as we have
already seen, it can be more appropriate to talk about setting the scale of utility differences. It turns out
that when errors are correlated over alternatives, normalizing the variance of the error for one alternative is
not sufficient to set the scale of utility differences. Train (2007, 31) provides the following four-alternative
example. Suppose we have U,,; = V},; + €,; and that the error vector €,, = {€n1,...,€na} has 0 mean and
the following covariance matrix:

011 012 013 O14

. g g g
0= 22 23 24 (6)
033 034
044

Because only differences in utility matter, this model is equivalent to one in which all utilities are differenced
from, say, the first alternative. Thus, we could write the model from above as: U, j1 = Vjj1 + €,;1 for

J = 2,3,4, where U,j1 = Upj — Upn1, Vij1 = Vij — Vi1, and the vector of error differences is €, =
((€n2 — €n1), (€n3 — €n1), (€na — €n1)). Note that the variance between the first and second errors is now:

Var(énzl) = Var(ﬁng — 6n1)
= var(e,1) + var(ep2) — 2cov(€ep, €n2)

=011 + 022 — 20712

We can also calculate the covariance between ¢éo1 (the difference between the first and second errors) and

*Where did this come from? Essentially, we want to set var(\e”) = 1.64. This is the same as saying A\>c® = 1.64. In this case,
= V1.64
o 2
>Note that in previous notes, I stated that the error variances in a standard logit model are normalized to - = 3.29 and that you
could convert probit coefficients to the scale of logit coefficients by multiplying them by+/3.29 = 1.81. This is true. It turns out
that we are talking about two different logit models with their own parameterization. For our purposes here, it doesn’t really matter
in that the point is we must normalize the error variances and that this will affect how we interpret the coefficients.



€31 (the difference between the first and third errors). This is:

COV(€n217 t?7131) = E(€n2 - 6nl)(en3 - 6nl)
= E(6n25n3 — €p2€n1 — €p3€pl + €nlenl)

= 093 — 021 — 031 T+ 011
The covariance matrix for the vector of error differences is:

o011 + 0922 — 2012 011+ 0923 — 012 — 013 011 + 024 — 012 — 014
Q= . 011 + 033 — 2013 011+ 034 — 013 — 014 @)
011 + 044 — 2014

As you can see from this matrix, setting the variance of one of the original errors does not set the variance
for all of the error differences. Imagine setting the variance of the first alternative to 017 = k. Now the
variance of the differences between the errors of the first two alternatives is k + 099 — 20712. An infinite
number of values for o992 — 2012 produce equivalent models.

What the analyst typically does is set the variance of one of the error differences to some number. This sets
the scale of the utility differences and therefore utility. Imagine that we set the variance of €2; = 1. Thus,
the covariance matrix is now:

3 1 (011 +023—012 —013)/m (011 + 024 — 012 — 014) /M
Q= - (011 + 033 — 2013)m (011 + 034 — 013 — 014)M ®)
: : (011 + 044 — 2014) /M

where m = 011 + 092 — 20712. Utility is divided by \/o11 + 022 — 20712 to obtain this scaling.

Let’s return to the difference between iid errors and correlated errors. When you have iid errors, recall,
normalizing the variance of one of the errors automatically normalizes the variance of the error differences.
With iid errors, 0;; = 0y; and 0;; = 0 for i # j. Thus, when o1 is normalized to k, the variance of the
error difference becomes 011 + 092 — 2012 = k + k — 0 = 2k.

An important point to note is that normalization influence the number of parameters that can be estimated.
The covariance matrix of the original errors shown in Eq. (6) has 10 elements in the four-alternative example.
The covariance matrix of the error differences shown in Eq. (8) with one element normalized has 6 elements,
5 of which are parameters.

B k' wep wae
Q" =| - wpp W (©)]

Wee

In other words, we shift from 10 parameters to 5 parameters. It turns out that a model with .J alternatives
has at most J(J — 1)/2 — 1 covariance parameters after normalization.

As I noted before, the normalization of logit and nested logit models are automatic with the distributional
assumptions made of the error terms. This is not the case with mixed logit and probit. As a result, you need
to keep normalization issues in mind with these models.



So far, we have looked at the basic setup of discrete choice models and this information will come in
extremely useful. We now turn to look at specific discrete choice models, staring with logit-based models.

2 Logit-Based Models

2.1 Deriving Logit-Based Models

We can derive logit-based models from the random utility model setup described earlier. Essentially, we
start with our basic utility equation:

The logit model is obtained by assuming that each ¢,; is distributed iid extreme value. This distribution is
also called the Gumbel distribution or a Type-I extreme value distribution. The density for each unobserved
component of utility is:

[(€nj) = exp™ “iexp(—exp™ ) (11)

This is shown in Figure 1.

Figure 1: Type-1 Extreme Value PDF
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The cumulative distribution is:
F(en;) = exp(—exp ) (12)

This is shown in Figure 2.



Figure 2: Type-1 Extreme Value CDF

Type-1 Extreme Value CDF

0.75 —

a4

Preobab ity

0.25 7

The variance of the distribution is %-. By assuming this, we have normalized the utility scale.

The difference between two extreme value variables is logistic. In other words, if €,,; and €,,; are iid extreme
value, then €,j; = €,; — €,; has a logistic distribution i.e.

efnji

i

13)
The key assumption of the iid extreme value distribution is ‘independence’. In other words, we assume
that the unobserved portion of utility for one alternative is independent of the unobserved portion of utility
for other alternatives. This is a somewhat restrictive assumption. How restrictive is it? One way to think
about this assumption is that it is the same as assuming you have a well-specified model. Recall that €,,;
is just the difference between U,,; and V,,;. The assumption of independence simply means that the error
for one alternative provides no information about the error of another alternative. In other words, we are
assuming that the model is sufficiently well-specified that whatever remains in the error term is white noise.
As Train (2007, 40) points out, the goal of the analyst is to specify utility well enough that the logit model
is appropriate.

Anyway, once we assume that the error terms are distributed iid extreme value, we can then derive the logit
choice probabilities. Recall from earlier that the probability that decision maker n chooses alternative ¢ is



just:

P,i = Prob(Uy; > Uy;)
= Prob(Vyi + €ni > Vij + €nj)
= Prob(en; < €ni + Vi — Vauj) (14)
If €,; is taken as given, Eq. (14) is the cumulative probability distribution for each ¢, ; evaluated at €,; +

Vi — Vij. According to Eq. (12), this is: exp(—exp(—(€en; + Vii — Vij))). Due to independence, this
cumulative distribution over all j # 1 is the product of the individual cumulative distributions:

— 7(5ni+vnifvnj)
Poileni = [ J e (15)
J#i

Because €, is not really given, the choice probability is the integral of P,,;|e,,; over all values of ¢,; weighted
by the density of €;.

_ —(€nitVni—Vnj) —€,; —e €ni
Py :/ Ie Tlem e Mdey, (16)
J#
It turns out that the solution to this integral is:

evni

Zj eni

This is the equation for the logit choice probability. Typically, we model the systematic component of utility
as a linear function of parameters: V,,; = x,;/3 and so the logit choice probability becomes:®

P = a7

eajniﬂ

Pni = 4Zj exnjﬁ

(19)

2.1.1 Scale Parameter

Let’s just go back to the scale parameter for a moment. Recall that in the logit model, we assume that
the unobserved component of utility is distributed iid extreme value with variance 72 /6. Think about the

SNote that T have derived the logit choice probability from a random utility model setup. It is possible to derive it from a basic
probability framework too. Let y be a dependent variable with J nominal outcomes. Let P(y, = 4) be the probability of observing
outcome ¢ in observation n.

1. Assume that P(y, = ) is a function of the linear combination, ;3.
2. To ensure non-negative probabilities, we use the exponential of x,,; 3.

3. To make the probabilities sum to 1, we divide e®»® by Zj e™niP to get

Ply.=i) =P, e’ 18
(Yyn = 1) = m’*W (18)

This is exactly the same as Eq. 22.



following model where utility is Uy, ; = Vi; + €, ;, where the unobserved portion has variance o? x (72/6).

Because the scale of utility is irrelevant to the choice of the decision maker, we can divide by ¢ without
changing choices. Thus, we now have U,; = V;,;/0 + €,;, Where €,; = e;:j /o. In this model, the variance
of the unobserved portion is 72 /6 as in our logit setup.” The choice probability, though, is now:

P et 2
ni = W (20)
This can be written as:
. eTni(B"/0)
P(yn =1) = Ppi = 1)

Zj e%nj(B*/0)

The parameter o is called the scale parameter because it scales the coefficients to reflect the variance of the
unobserved portion of utility. As we saw earlier, only the ratio 5*/o can be estimated because 5* and o
are not separately identified. In most textbooks, you will find the model expressed in its scaled form, with
B = (3* /o, and the standard logit choice probability:

exn'iﬁ
d€

The point to showing you all of this is to make you recognize that the coefficients you get indicate the
effect of a variable relative to the variance of the unobserved factors. The larger the variance in unobserved
factors, the smaller the coefficients (even if the observed factors have the same effect on utility). This is
worth remembering when you evaluate the same model on two different data sets. If the variance of the
unobserved factors is different across the two data sets (say two different countries or time periods), you
will find that the coefficients differ across the two models. However, you should be careful not to infer from
the coefficients that the effect of the variables on utility is different across the two data sets.

Pri = (22)

2.1.2 Estimation

Estimation of this model is relatively easy since the log likelihood function is globally concave. To specify
the likelihood, first define d,,; = 1 if individual n chooses alternative i, d,,; = 0 otherwise. This means that
there are J lots of d,,;, each indicating a choice. We can then use these indicators to select the appropriate
terms in the likelihood function. Thus, the likelihood function for individual n is:

L, = Pt x P2 ng,j?’ X ... X Pi’}" (23)

where P,; is the probability that individual n chooses alternative i. The likelihood function for the entire
sample is:

N
c=TT (Pl x Pl < Pl x .. x Py (24)

n=1

"var(en;) = var(ey,; /o) = (1/o?)var(e;;) = (1/0°) x 0 x (7%/6) = /6.

10



Thus, the log-likelihood function is just:®

N J
InL = Z Z dpiln(Pp;)

n=1i=1

> duin (0 2
= niill )

n=1i=1 ZJ' etnil

3 Pure Conditional Logit — Alternative-Specific Data

It is time for some terminology regarding different logit-based models. As we will see, there are slightly
different types of logit models and it is worth thinking about what each of them mean. The model shown
above is commonly referred to as a pure conditional logit model given how its subscripts are listed. Recall
the basic setup.

Unj = an + €nj
= TpjB + €nj (26)

Let’s take a closer look at Eq. (26). First, z,; is a matrix of the characteristics of the jth alternative relative
to individual n - they are choice- or alternative-specific characteristics. In other words, the independent
variables don’t provide information about the decision maker; rather they provide information about the
decision maker relative to each alternative. A common example is the left-right ideological distance from
individual n to some party. This means that there will be as many left-right ideological distance observa-
tions for each individual n as there are political parties. Second, 3 is a vector of parameters relating the
relationship between individual n and the alternative x,,; to the individual’s utility for the alternative. In
other words, the parameters are not alternative specific i.e. they are not subscripted by j. This means that
there will be only one coefficient on an independent variable like the left-right ideological distance between
an individual and a party for ALL the possible alternatives (parties). To see all of this more clearly, let’s
imagine that our systematic component might be something like the following:’

Vinj = BilssueDistance,, ; 27

81t turns out that you can also estimate this model on a subset of the alternatives. This is useful when the number of alternatives
facing each decision maker is so large that estimating the model parameters is difficult. Consider a choice situation in which
there are 100 alternatives. You can estimate the logit model on a subset of 10 alternatives for each sample decision maker with
the person’s chosen alternative included as well as 9 alternatives randomly selected from the remaining 99 alternatives. If all
alternatives have the same chance of being selected into the subset, then this is the same as estimating the model on the full subset.
The only difference is that this estimation procedure is not as efficient, which you would expect given that you have thrown away
information. For more information on this, see Train (2007, 68-70).

Note that there is no constant - I'll explain why in a moment.

11



If we had three choices, then our systematic components would be:

Vn1 = BilssueDistance,,;
Vo = (B1lssueDistance,,s
Vng = B1lssueDistance,,3 (28)

Now substituting the systematic components into our utility equation, we have:

U,1 = (iIssueDistance,; + €51
U,o = pPIssueDistance,s + €59
U3 = pP1IssueDistance,3 + €,3 29)

As you can see, the effect of each independent variable (ISSUEDISTANCE) is constant (31) across all three
alternatives. However, the value of the independent variable varies across the alternatives.

An example of what the data will look like is shown in Table 1. Imagine that there are four individuals
choosing among three alternatives. Imagine also that there is just one independent variable ;. n is the
respondent’s ID or individual n’s ID.

Table 1: Data in a Pure Conditional Logit Model

Outcome j Outcome chosen  Variable x,,;
1

)

$11=1
1’12:0
$13=7
I‘21=2
.7}22=1
T93=06
$31=1
T32=06
ZE33=9
l’41=1
1'42=3

n
1
1
1
2
2
2
3
3
3
4
4
4 1'43:2

W= WK~ W~ W
—_— 0O O OO = OO = O =

As we have seen, the probability that individual n chooses alternative ¢ in the pure conditional logit model
is:
exniﬁ

Pni = ‘Zj ea:njﬁ

(30)

Note that if there were some variable (z,,) that did not vary over the choices for the individuals, then that
variable would just cancel out of Eq. (32). In other words, STATA would drop it. For example, if you had a
variable that measured the age of a voter, then this would not vary over the choice of parties that he gets to
vote for. As a result, it would be dropped. Because the constant is essentially a variable that does not vary

12



over the alternatives, it too is dropped. This is why you do not get a constant from a pure conditional logit

model. !0

3.1 Estimation

To estimate the pure conditional logit model in STATA you type:

clogit Y X, group(respid);

where RESPID is the name of the respondent’s ID variable.

3.2 Interpretation

The results from a CL model of party choice in the Netherlands are shown in Table 2. The model examines
how the respondent’s probability of voting for a party is affected by the distance between the respondent and
the party on the abortion, nuclear, income, and left-right issue dimensions.

Table 2: The Determinants of Party Choice in the Netherlands

Regressor Pure CL Model
AbortionDistance -0.24%%*
(0.04)
NuclearDistance -0.10%**
(0.04)
IncomeDifferenceDistance -0.44%**
(0.04)
RightDistance -0.66%#%*
(0.04)
Constant
Log likelihood -692.79
Observations 3461

*p < 0.10; ** p < 0.05; *** p < 0.01 (two-tailed)
Standard errors are given in parentheses

3.2.1 Interpreting Coefficients

The sign of the coefficients indicate how an increased distance on a particular issue dimension between the
respondent and a party affects the likelihood that the respondent will vote for that party. Thus, the fact that

10You probably should have a constant, but I'll show you how to put one in a conditional logit model in a moment.
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all the coefficients are negative and significant means that we can be quite confident that the respondent will
be less likely to vote for a party as the party moves away from the respondent on each issue dimension. In
effect, this is quite strong support for a spatial model of voter choice.

3.2.2 Odds Ratios

It is possible to give the conditional logit model an odds interpretation. The odds of outcome a versus
outcome b is:

e%naﬁ
P, > eni® €x"aﬁ [Zna—2nb]B
ODDS,, = B, = e T g b (31)
e’

where the odds change according to the difference in the value of the x’s associated with the two outcomes
a and b. So say the respondent is choosing between two choices a and b. On RIGHT, INCOMEDIFFERENCE,
and NUCLEAR, the two choices are the same distance from the respondent such that x,, — x5, = 0.
However, party a is 2 units closer on the abortion issue than party b. The odds that the respondent chooses
party a over party b is e~2(—0-2)=1.62. In other words, the respondent is 1.62 times more likely to vote for
party a (the closer one on the abortion issue) than the identical party b that is 2 units further away on the
abortion issue.

You can obtain exponentiated coefficients from the conditional logit model by typing:
clogit Y X, group(respid) or;

These exponentiated coefficients give you the effect of a unit change in the independent variables on the odds
of any given alternative. Another useful way to obtain both the coefficients and exponentiated coefficients
if you have the SPOST package is to type:

clogit Y X, group(respid) or;
listcoef, help;

3.2.3 Predicted Probabilities and First Differences

You can also calculate predicted probabilities and first differences using the following equation that we noted

earlier.!!
exniﬁ

Z] exnjﬁ

T As before, these predicted probabilities can be found using CLARIFY, Prvalue, or your own manual calculations.

P, = (32)
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4 Multinomial Logit Model — Case-Specific Data

As I have noted earlier, there are other logit-based models. One such model is known as the multinomial
logit model. The basic utility equation for individual n choosing alternative 57 an MNL model is shown
below.

Unj = an + €nj (33)

The systematic component of the utility function is given as:
Vg = 2% (34)

So, we have
Unj = Zp7Y; + €nj (35)

It is important to look at Eq. (35) carefully to see how it differs from the conditional logit model shown
earlier.'> First, 7y is a vector of alternative-specific parameters i.e. the parameters are subscripted by j.
These parameters relate the characteristics of a respondent (2) to the respondent’s utility for the j*" choice —
they are individual-specific characteristics. This means that the effect of the independent variables will vary
across all of the choices. In other words, there will be a separate coefficient on each independent variable
for each possible outcome. For example, if the age of the individual was an independent variable, then the
effect of age on choosing alternative 1 would be different to its effect on choosing alternative 2, alternative 3
etc. Second, z, is a matrix of individual or case-specific characteristics. Note that z,, is just subscripted by
n. In other words, these individual characteristics have nothing to do with the alternatives that are available.
To see all of this more clearly, let’s imagine that our systematic component might be something like the
following:

an = 750 + leAgen + 'ngEducationn + ngMalen (36)

If we had three choices, then our systematic components would be:

Vi =710 + ’ynAgen + ~12Education,, + y;3Male,,
Via = 720 + y21Age,, + v22Education,, + y23Male,,
Vis = 30 + 31Age,, + v32Education,, + y33Male, 37

Now substituting the systematic components into our utility equation, we have:

Un1 = Y10 + 711Age,, + 712Education,, + y13Male,, + €51
Un2 = v20 + 721Age,, + y22Education,, + y23Male,, + €2
Uns = 730 + 131Age,, + vy32Education,, + y33Male,, + €3 (38)

As you can see, the effect of each individual characteristic (Age, Education, Male) varies across each of the
three alternatives i.e. 7, is subscripted by the choice (j) and the independent variable (k).

An example of what the data will look like is shown in Table 3 below. Imagine that there are four individuals
choosing among three alternatives. Individual 1 chooses alternative 2, individuals 2 and 3 choose alternative
1, and individual 4 chooses alternative 3.

I use z and ~ to distinguish the MNL model from the pure CL model from earlier.
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Table 3: Data in an MNL Model

n  Outcome j chosen Variable z,,
1 2 z1=1
2 1 z2 =4
3 1 z3 =2
4 3 z4=1

The probability that individual n chooses alternative ¢ in the multinomial logit model is:

eVn'L

Pni = ‘ZJ ean

ezn’yi
TS e
>.j€

Compare this to the probability from earlier that individual n chooses alternative ¢ in the pure conditional
logit model:

(39)

exniﬁ

Pni = ‘Ej el‘nj,@

(40)

4.1 Identification — Sociodemographic Variables

Unlike with the pure conditional logit model, there is a problem as things stand — the alternative-specific
coefficients 4; are underidentified. This is a point we made very early on when we discussed sociodemo-
graphic variables i.e. characteristics of the decision maker. By definition, attributes of the decision maker
do not vary over the alternatives. As a result, they can only enter the model in ways that create differences in
utility over the alternatives. To restate the problem slightly differently, for any vector of constants ¢, we can
get the exact same probabilities whether we use 7y, or v*, where v* = 7; + ¢. In other words, we could add
an arbitrary constant to all the coefficients in the model and we would get exactly the same probabilities.
Consider the following example where we have three alternatives:

ezn')’l

Ry @

Now add a vector of constants g so that we have:
ecn ('Yl"‘q)

3 i+
Sy e (i)

Pn1 = (42)

With a little manipulation, this can be rewritten as:
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ezn')’l eznq

 ean(mta) 4 oezn(r2+a) 4 ezn(13+9)

ezn'Yl ean

e nTMe?nd + e?nV2e%nd | e?nV3e*nd

ezn 71 ezﬂq

(5 en)em

ezn'}/l
- )
Zj:l e

which is what we started with. Therefore, the model, as written, is underidentified.

As we noted earlier when discussing sociodemographic variables in general, a convenient normalization that
solves the identification problem is to assume that one of the sets of coefficients (the coefficients for one
of the choices) are all zero. As we’ll see, this then becomes the reference category against which all of the
results are compared. Say that we set y; = 0. In other words, say we set all of the coefficients for alternative
1 to be 0. By doing this, we are assuming that the first alternative is the base category against which all
others are compared.'® Once this constraint is added, we now have:

e*n7i
Z}‘Izl e

Since e*»71 = ¢*9 = 1, we can rewrite Eq. (44) as two separate equations:

P, = where v, =0 (44)

e#n0 1
P, = = 45)
n ezno + Z;]:2 e*nYi 1+ 23722 e?n7j
and
eznvi
i for 7> 1 (46)

14 25»122 e*ni

3Note that we can arbitrarily choose any alternative as our base category. You should be very careful in that different statistical
programs automatically choose different categories - some choose the lowest category, some the highest. STATA’s default is to
select the alternative that is chosen most often as the baseline category.
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Note that this is the formulation used in Alvarez and Nagler (1998)."* As we’ll see, the way to think about
the use of a base category is that the logic when it comes to interpretation is exactly the same as when you
break a K + 1 category variable into X dummy variables.

4.2 Estimation
To estimate the multinomial logit model in STATA you type:
mlogit Y X, base(some number);

where SOME NUMBER is the alternative that you want as the baseline category.

4.3 Interpretation

Here are some results from a model of party choice in the Netherlands where

PartyChoice,,; = Bjo + [j1Abortion,, + [§;2Nuclear,, + 3;3IncomeDifference,,
+ pjsRight, + B;5Male,, + B;¢Religious,, + 3;7Education,, + €,; (48)

where PARTYCHOICE has four categories (Pvda, CDA, VVD, and D66). ABORTION, NUCLEAR, IN-
COMEDIFFERENCE and RIGHT measure the respondents attitudes towards the various issues on a seven
point scale, MALE is a dummy variable indicating gender of respondent, RELIGIOUS is a dummy variable
indicating whether the respondent is religious or not, and EDUCATION indicates the respondent’s level of
education on a five point scale. Pvda is the reference category. Results are shown in Table 4.

'“Note that you will see slight variants on this. For example, Charles Franklin’s notes have

1

Poo=—cgF——
143 e

eZn Yi

Fri = T enm,
1+Zj:16" ’

for 1 >0

(47)

The reason for the difference is that Franklin is assuming that the first alternative is actually coded O instead of 1. In other words,
i=0,1,...,J,so that there are J+1 alternatives rather than the J alternatives we have been assuming in our notes. This changes
what we sum over in the denominator of our probability equations. Both formulations are obviously equally good.
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Table 4: The Determinants of Party Choice in the Netherlands

PVDA is the Reference Party

Regressor CDA VVD D66

Abortion -0.13%%% (.20 %%* 0.16%**
(0.05) (0.07) (0.07)

Nuclear -0.13%%% Q.2 %%* -0.06

(0.05) (0.06) (0.06)
IncomeDifference  -0.31%**  -(.75%%*  _(32%**
(0.06) (0.08) 0.07)

Right 1.04%%3% 1.19%:** 0.47 %%
(0.08) (0.10) (0.09)
Male -0.60%** () 85%¥k () 57kkk
(0.19) (0.24) 0.22)
Religious 1.597%:% 0.03 0.09
0.22) (0.25) (0.23)
Education 0.45%** () 77%** 0.65%:**
(0.09) (0.12) 0.11)
Constant S318%kE g 4wk 3 [k
(0.65) (0.84) (0.78)
Log likelihood -1031.92  -1031.92 -1031.92
Observations 1172 1172 1172

*p < 0.10; #* p < 0.05; **#* p < 0.01 (two-tailed).
Standard errors are given in parentheses

4.3.1 Interpreting Coefficients

As you can see, there are three sets of coefficients for each independent variable that correspond to the
three different parties that are not the base category. You can interpret the signs of the coefficients in the
expected manner. For example, a negative (positive) coefficient indicates that the independent variable
reduces (increases) the probability of voting for a particular party compared to the baseline party. For
example, it turns out that being a male reduces the probability that the individual will vote for the CDA,
VVD, or the D66 when compared to the PVDA. Being religious makes it more likely that you will vote for
the CDA compared to the PVDA but does not make it more or less likely that you will vote for either the
VVD or the D66 compared to the PVDA.

We can also interpret the alternative-specific constants. In some sense, if our model (utility function) was
complete and we had captured all the relevant components of vote choice, then the constant should be zero.
Thus, a non-zero constant indicates that the respondents have some inherent propensity to vote for one party
over another for reasons that are not captured in the model. The alternative-specific constants capture the
average effect on utility of all factors that are not included in the model.
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4.3.2 (Odds Ratios

It is possible to give the multinomial logit model an odds interpretation. The odds of outcome a versus
outcome b, where neither a nor b are the baseline category, is:

e*na
P W 6zn7a _
ODDSab =2 _ eJZ"Vb =— — ezn['Ya ) (49)
L S

If you wanted to look at the odds ratio of voting for any of the parties as opposed to the baseline category
(1), then this simplifies to:
ODDS,; = e*enl = g2 (50)

It turns out that the odds of an individual who is a 2 on ABORTION, NUCLEAR, INCOMEDIFFERENCE, and
RIGHT, who is MALE, who is RELIGIOUS, and who is a 5 on EDUCATION (5) voting for the CDA rather
than the Pvda (the baseline category) is:

ODDS (cpA-praay = o~ 0:318+25 (=0.13)42x (=0.13)+2x (=0.31)+2x (1.04)+1x (=0.60)+1x (1.59)+5x (0.45)
-Pvda) —

=2.92 &)
Thus, an individual with these characteristics is 2.92 times more likely to vote for the CDA than the Pvda.!’

You can also think about how a change in a particular variable affects the odds of voting for one of the
parties rather than the reference category. I already said that the odds of voting for party o rather than the
reference category (j=1) is:

ODDS,1(z,) = e*7a (52)

It is relatively easy to show that
ODDS.1 (2n, znk + 0)

ODDS.1 (2n, Znk)

= Tka? (53)

where z,,, is the k" independent variable for individual n and y, is the coefficient on the kth independent
variable for alternative a. Thus, for an increase of one unit in a respondents measure on ABORTION, the
odds of voting for the VVD rather than the Pvda are expected to change by a factor of e??1*! = 1.24,
holding all other variables constant. In other words, an increase of one unit in an individual’s ABORTION
score makes them 1.24 times more likely to vote for the VVD rather than the Pvda or, equivalently, increases
their likelihood of voting for the VVD rather than the Pvda by 24%. Thus, in order to know what a one unit
effect of a given variable is on the odds of voting for one party over the reference category, all you have to
do is exponentiate the coefficient.

It is easy to get STATA to give you this directly by typing:

mlogit party abortion nuclear incomedifference right male
religious education, base (some number) rrr

5Imagine that you wanted to calculate the odds that this individual voted for the VVD rather than the CDA. Because it is easier
to calculate Eq. 50 rather than Eq. 49, the easiest thing to do is reestimate the model but now make the CDA the baseline category.
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4.3.3 Predicted Probabilities and First Differences

Predicted probabilities can be computed with the following equation.'®

ezn'}/i

- fori>1 (55)
1+ 2}122 e*n i

ng

The predicted probability that an individual votes for the VVD if they have the same characteristics as before
is 0.15 [0.07, 0.28]. 95% confidence intervals are shown in parentheses. The predicted probability that an
individual votes for the VVD if they have exactly the same characteristics as before but their education is a
1 instead of a 5 (i.e. low education) is 0.03 [0.01, 0.06]. The effect of reducing education froma 5Sto a 1 is
to reduce the probability that the individual votes for the VVD by 0.13 [0.05, 0.24]."7

Another nice way to present predicted probabilities is with the help of a graph. In Figure 3, I plot the
predicted probability of voting for each of the parties across all levels of the education variable when other
variables are set to particular values: abortion=2, nuclear=2, incomedifference=2, right=2, male=1, and
religious=1. At any level of education, the four probabilities obviously sum to one. To get this graph, you
would use the SPOST package and type:

mlogit party abortion nuclear male religious education, base (0);
prgen education, x(abortion=2 nuclear=2 incomedifference=2
right=2 male=1 religious=1) from(l) to (5) generate(p) ncases|(6);
desc px*;
label var ppO "Pvda";
label var pp2 "VVD";
label var ppl "CDA";
label var pp3 "D66";
graph twoway connected pp3 ppl ppr2 ppl px,
yscale( range(0 1)) ylabel(0(0.2)1);

16 As we saw earlier, the predicted probability for the baseline category (j = 1) is

1

- - (54)
1+ Z;]:Q e*n i

Pn 1

17 As before, these predicted probabilities can be found using Clarify, Prvalue, or your manual calculation in STATA.
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Figure 3: Predicted Probability Line Plot
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In Figure 4, I plot the same information in a slightly different way. In effect, I plot a summed predicted
probability area graph across all levels of the education variable when other variables are set to the same
particular values as before. To get this graph, you would use the SPOST package and type:

mlogit party abortion nuclear male religious education, base (0);

prgen education,
right=2 male=1 religious=1)

desc px*;
label var psl
label var ps2
label var ps3
label var psO
gen zero=0;
gen one=1l;
graph twoway

(rarea psl zero px,
(rarea ps2 psl px,
(rarea ps3 ps2 px,
(rarea one ps3 px,

" CDA" ;
"VVD+CDA";
"D66+VVD+CDA";
"Pvda+trest";

bc(gsl))
bc (gs4))
bc (gs8))
bc(gsll)),

ytitle ("Summed Probability")
legend (order (1 2 3 4)

xtitle ("Education")

label (1 "CDA")
label (2 "vVvD")
label (3 "D66")
label (4 "Pvda"))
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x (abortion=2 nuclear=2 incomedifference=2
from(l) to (5) generate(p) ncases(6);

xlabel (1l 2 3 4 5) ylabel(0(0.25)1)



plotregion (margin(zero));

Figure 4: Summed Predicted Probability Area Plot
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4.3.4 Marginal Effects

You can also calculate the marginal effect of an independent variable on the probability of some outcome
category.

e*ni
aPn,L B a (Z}le eZn’Yj)

8znk N aznk

_ Brie®™ 2;21 el — Z}'Izl[’ijezmj]eZ"%

(Y27 e=]?

ezn% ezn Vi ezn i J
= Vi X N

— X X Yik

] J B J . § : J
e?n’ e? Zn"Y.

Zj_—l " Zj_—l nYi Zj_—l ey j=1

J

= Ppi | Vki — Z BjkPnj (56)
j=1
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As always, the marginal effect is the slope of the curve relating z,; to F,;, holding all other variables
constant. Using the following mfx command to save writing the code:

mfx compute,
at (abortion=2 nuclear=2 incomedifference=2 right=2
education=5 male=1 religious=1) predict (outcome (2))

we find that the marginal effect of ABORTION on the probability that an individual chooses the VVD is 0.03
[0.01, 0.05]. Note that the marginal effect depends on the values of all the other 7;s and so depends on the
levels of all the other variables. As the value of z,; changes, so can the sign of the marginal effect. For
example, the marginal effect of some 2z may be positive at some point, but negative at another. Thus, you
cannot infer anything about the sign of the marginal effect from the sign of the coefficient from the model
just estimated.

4.4 Comparing Logit and Multinomial Logit

The multinomial logit model can be thought of as the same as simultaneously estimating binary logit models
for all possible comparisons among the outcome variables. Consider the following situation with three
alternatives:

Un1 =720+ €m1
Un2 = 722n + €n2
Uns = 732n + €n3
(57)

where U,,; represents the utility of the nt" individual for the j** alternative. If the IIA assumption holds
(which is assumed by both the logit and multinomial logit models), then binary logit will produce consistent
estimates of the parameters because the maintained model implies that the presence of a third choice has
no impact on the relative probabilities of choosing among the remaining two choices (we will see this a
little later when we discuss the IIA assumption in more detail). In other words, a binary logit will generate
consistent estimates of -2 using only individuals who choose 2 or 3. A binary logit will also generate
consistent estimates of y; using only individuals who choose 1 or 3. The only difference between the binary
and multinomial logit models is that there is a loss of efficiency with the binary logit. This is because some
information is discarded by dropping those individuals who voted for the third choice i.e. sample size is
smaller. In other words, when we compare those who choose between 1 and 2, we drop those who chose 3.
The multinomial logit model does not do this and produces more efficient estimates. The important point
to take away is that the binary and multinomial logit models are estimating the exact same parameters; the
multinomial logit model is no richer than the binary logit model (Alvarez & Nagler 1998).

Let’s think about this some more. Say we had a choice between three outcomes (Bush, Clinton, Perot) and
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one independent variable z. We could examine the effect of z on the choice using three binary logit models.

W[PCinoe]
i P(Bush\z) | 0,Clinton|Bush T 7Y1,Clinton|Bush
P(Perot|z) |
W— = "Y0,Perot|Bush + 1, Perot|Bush?
W[PCnon)]
I P(PCI‘O'L‘ Z) | 0,Clinton|Perot T 7Y1,Clinton|Perot

where the subscripts to the s indicate which comparison is being made. The three binary logit models
include redundant information. Since ln% = Ina — Inb, then it follows that:

P(Clinton|z) In P(Perot|z)] i P(Clinton|z) (58)
P(Bush|z) P(Bush|z)| P(Perot|z)
This implies that:
7Y0,Clinton|Bush — 7Y0,Perot|Bush = 7Y0,Clinton|Perot
Y1,Clinton|Bush — "Y1,Perot|Bush = 1,Clinton|Perot (59)

The point here is that we only have to estimate two logit models to know what the results of the third logit
will be.

4.5 STATA’s MPROBIT Command

STATA’s MPROBIT command is the normal error counterpart to the MLOGIT command in the same way that
the PROBIT command is the normal counterpart to the LOGIT command. You have to be careful here, though,
because although MPROBIT estimates a multinomial probit model, this is NOT the multinomial probit model
that is typically referred to in the literature. The model fit by mprobit assumes that the errors are normal.
With normal errors, it is possible for errors to be correlated across alternatives, thus potentially removing the
ITA assumption (which we will get to in a moment). In fact, analysts typically discuss the multinomial probit
model for the case where the errors are correlated since this is the only real advantage of the multinomial
probit model over the multinomial logit model. However, MPROBIT assumes that the errors are uncorrelated
i.e. cov(ej,e;) = 0. In other words, MPROBIT assumes IIA just like MLOGIT. If you use MLOGIT and
MPROBIT on the same data, you will get almost identical predictions. Given the ease with which we can
estimate MLOGIT models, there seems to be little point in estimating MPROBIT models. The important point
to take away, though, is that you need to make sure you know exactly what type of multinomial probit model
you are running — MPROBIT is multinomial probit with the assumption of IIA.

25



5 Mixed Conditional Logit Model - Alternative-Specific and Case-Specific
Data

It is possible to combine the multinomial logit model with the pure conditional logit model to get what I
am calling a mixed conditional logit model. This mixed model is often simply referred to as the conditional
logit model, which obviously causes confusion since this is different from the pure conditional model that
we described in the previous section. The mixed CL model allows you to examine how the characteristics
of an individual n (MNL) — case-specific data — and the characteristics of some choice j (CL) — alternative-
specific data — affect the probability that the decision maker will choose alternative 7.

We start with the same basic utility equation from earlier:
Unj = Vij + €n (60)
The systematic component of the utility function in the mixed CL model is given as:
Vaj = 2nvj + T8 (61)

Tn; contains the values of the choice-specific variables for outcome j and individual n, while z,, contains
individual-specific independent variables for individual n. So, the utility of individual n for choice j is:

Unj = zn7vj + xmﬂ + €nj (62)

To see all of this more clearly, let’s imagine that our systematic component might be something like the
following:
Vai = 7vj0 + vj1Age,, + 7v;2Education,, + v;3Male,, + B1IssueDistance,; (63)

If we had three choices, then our systematic components would be:
Vi1 = 710 + 711Age,, + y12Education,, + y13Male,, 4 (31IssueDistance,,;

Via = v20 + Y21Age,, + y22Education,, + y23Male,, 4+ 3;IssueDistance,,2
Vs = v30 + v31Age,, + v32Education,, + y33Male,, + (;1IssueDistance,,3 (64)

Now substituting the systematic components into our utility equation, we have:

Uni =710+ vllAgen + v12Education,, + y13Male,, + [1IssueDistance,; + €;1
Un2 = v20 + Y21Age,, + y22Education,, + y23Male,, 4+ (1IssueDistance,2 + €,2
Unz = v30 + B31Age,, + v32Education,, + y33Male,, + B11IssueDistance,3 + €3 (65)

An example of what the data will look like might help. Imagine that there are four individuals choosing
among three alternatives. Imagine also that there is just one choice-specific independent variable x,,; and
one individual-specific independent variable z,. n is the respondent’s ID or individual n’s ID.
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Table 5: Data in a mixed CL Model

n Outcomej Outcome chosen Variable x,; Variable z,
1 1 0 Z11=l l’1=l
1 2 1 Z12=0 ]J1=1
1 3 0 Z13=7 1 =1
2 1 1 221=2 r2=4
2 2 0 z22=1 zo=4
2 3 0 223=0 ro=4
3 1 1 2’31=l l’3=2
3 2 0 232=6 JJ3=2
3 3 0 Z33=9 1’3=2
4 1 0 Z41=l l‘4=l
4 2 0 Z42=3 l‘4=1
4 3 1 24322 1’421

Following the same logic as we had before, the probability that individual n chooses alternative ¢ in the
mixed CL model is:

e*n7j +$nj5

Pui=—
n Z] ezn’yj“l’xnjﬁ

where v1 =0 (66)

Note that we can rewrite this probability in terms of the systematic components of the utility function i.e.

eVni

Zj eVni

The important point here is that we can rewrite the probability that individual n chooses alternative ¢ in
exactly these same terms — in terms of the systematic components of the utility function — for the MNL
model, the CL model, and the mixed CL model. In other words, the MNL model, CL model, and mixed CL
model are all just forms of the exact same model with slightly different subscripts indicating whether we
have alternative-specific and/or case-specific data.

Py = (67)

5.1 Estimation

As you’ll recall from earlier, I noted that it was not possible to include individual specific characteristics
in a pure conditional logit model since they do not vary over the alternatives. In other words, they would
cancel out of the probability equation - STATA would drop them. So, how do we get around this problem?
In effect, we use a dummy variable type of trick. Essentially, we transform each individual-specific variable
zZnk Into a series of dummy variables that each take on the value of z,; for each alternative, 0 otherwise.
Recall that with the individual-specific MNL model, we want as many coefficients on each z, as there
are alternatives. Creating the dummy variables in this way essentially produces as many coefficients on
znk as there are alternatives. Obviously, when we estimate our model, we will only be able to include J-1
of these dummy variables. The omitted dummy variable will be associated with a particular alternative —
this alternative will become the reference category against which all of the effects of the individual-specific

27



variables will be compared. To see what the data set would now look like, see Table 6.

Table 6: Data in a mixed CL Model

n  Outcomej Outcome chosen Variable z,,; Variable z,,1 Variable 2,2 Variable z,;3
1 1 0 1'11:1 2’1=1 2’1=0 21=O
1 2 1 .%‘12:0 Zl=0 Zl=1 21:0
1 3 0 $13=7 Zl=0 Zl=0 21=1
2 1 1 To1=2 z9=4 29=0 29=0
2 2 0 :E22=1 ZQ=O 22=4 Z2=0
2 3 0 T93=06 29= 29=0 z9=4
3 1 1 $31=1 Z3=2 23=0 Z3=0
3 2 0 x32=6 2’3=0 Z3=2 23=O
3 3 0 1'33=9 23=0 23=0 23=2
4 1 0 1'41:1 Z4=1 Z4=O Z4=0
4 2 0 T40=3 24= z4=1 24=0
4 3 1 1'43:2 Z4= Z4=0 Z4=1

Let me explain how to create these dummy variables with reference to our Dutch elections data. The first
thing to do is generate alternative specific dummies for our four parties.

generate votl=(vote==1);
generate vot2=(vote==2);
generate vot3=(vote==3);
generate votd=(vote==4);

Next we generate a series of interaction terms between our alternative specific dummies and each of our
individual-specific variables. Below, I’ll assume that we only have one individual-specific variable - whether
the respondent is RELIGIOUS or not.

generate relgionl=religxvotel;
generate relgion2=religxvote?2;
generate relgion3=religxvote3;
generate relgiond=religxvote4;

We are now ready to run our mixed CL model. Let’s say that we have one individual-specific variable
(RELIGION,,) and one choice-specific variable (DISTANCELEFT,,;) which measures the left-right distance
between the individual and each alternative.

clogit choice vot2 vot3 vot4d religion2 religion3
religiond4 distanceleft, group (respid)
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VOT2, VOT3, and VOT4 are the alternative-specific constant terms. Alternative 1 would be the base category
against which the individual-specific effects would be evaluated.

5.2 Interpretation

The results from a mixed CL model of party choice in the Netherlands are shown in Table 7. The model
examines how the respondent’s probability of voting for a party is affected by several choice-specific vari-
ables (distance between the respondent and the party on the abortion, nuclear, income, and left-right issue
dimensions) and several individual-specific variables (MALE, RELIGIOUS, EDUCATION).

Table 7: The Determinants of Party Choice in the Netherlands

Regressor Mixed Conditional Logit
AbortionDistance -0.27%%*
(0.04)
NuclearDistance -0.12%%*
(0.04)
IncomeDifferenceDistance -0.42%%*
(0.05)
RightDistance -0.71%%*
(0.05)
Reference Party: Pvda
CDA VVD D66
Male -0.64%*%  -(0.88**k*  _(,53%*
(0.28) (0.32) 0.27)
Religious 1.10%:* -0.35 0.26
(0.30) (0.31) (0.26)
Education 0.49%** 0.97%**  (.56%**
0.13) (0.16) 0.13)
Constant -1.54%%% D 3QAE D GAkkE
0.47) (0.53) (0.44)
Log likelihood -576.61 -576.61 -576.61
Observations 3461 3461 3461

*p < 0.10; ** p < 0.05; *** p < 0.01 (two-tailed)

Standard errors are given in parentheses

5.2.1 Interpreting Coefficients

You interpret the coefficients in exactly the same way as you would in the MNL model for the individual-
specific variables and in exactly the same way as you would in the pure CL model for the choice-specific
variables. For example, we can infer that a respondent is less likely to vote for a party that is further
away from him on any of the issue dimensions. We could even infer that respondents place twice as much
importance on the abortion issue as the nuclear issue. We can also say that a religious respondent is more
likely to vote for the CDA than the Pvda, but is no more likely to vote for the VVD or D66 than the Pvda.
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5.2.2 (Odds Ratios

Again, you can and should do more than simply interpret the coefficients. You can think in terms of odds
ratios in exactly the same way as you did in the MNL and CL models. The odds that an individual will vote
for a party a that is closer by one unit on the abortion issue than a party b is e ~9-27*~1=1.31 i.e. they will be
more likely to vote for the closer party.'® The odds that an individual voter will vote for the VVD if he were
male compared to the identical voter who is female is e ~0-%8*1=0.43 i.e. a male voter is less likely (57% less
likely) to vote for the VVD than the Pvda all else equal than a female voter.

5.2.3 Predicted Probabilities and First Differences

We can also obtain predicted probabilities and first differences using:

€Z" Yi +37nj5

Pu=—
n Z] ezn’yj"l‘xnjﬁ

where v; =0 (68)

The predicted probability that a voter with the same characteristics as before (male, religious, high edu-
cation) in a party system where the Pvda is two units further away from the respondent than the CDA on
the nuclear issue (but the same distance away on all other issues) votes for the CDA is 0.36 [0.23, 0.50].
The predicted probability if the individual was female but with all the same characteristics is 0.45 [0.29,
0.62]. The effect of changing this individual from a male to a female (or the first difference) is to increase
the predicted probability that the voter supports the CDA by 0.09 [0.03, 0.21]. Again, these results fit with
our earlier inference that a woman was more likely to vote for the CDA than the Pvda compared to a man
holding everything else constant.

6 Power and Limitations of Logit-Based Models

Train (2007, 46) notes that there are at least three limitations of the logit-based models that we have looked
at:

1. Logit models can represent systematic taste variation (taste variation over the alternatives for observed
characteristics) but not random taste variation (differences in taste that cannot be linked to observed
characteristics).

2. Logit models imply proportional substitution across alternatives given the analyst’s specification. In
other words, logit models assume IIA and cannot capture more flexible forms of substitution across
alternatives.

3. If unobserved factors are independent over time in repeated choice situations, then logit models can
capture the dynamics of repeated choice. However, logit models cannot capture situations where

181t is -1 because the party a is closer.
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unobserved factors are correlated over time.!?

6.1 Taste Variation

The value that decision makers place on each attribute of the alternatives varies, in general, over decision
makers. In other words, some people might value a certain characteristic of an alternative more than other
people. The tastes of decision makers also vary for reasons that are not linked to observed demographic
characteristics — different people are different. In other words, you can have two people who have the
same income, same education, and so on, make different choices because they have different individual
preferences and concerns. Logit models can only capture some types of taste variation. Specifically, logit
models can capture tastes that vary systematically with respect to the observed variables. For example,
you could include an interaction term between an alternative-specific variable and an individual-specific
variable to capture the idea that the alternative-specific variable is more important for some individuals than
others. A limitation of logit models, though, is that it cannot handle tastes that vary with unobserved (or
unmeasured) variables or purely randomly. Consider the following example. Suppose we had the following
utility equation with two alternative-specific variables, x; and z;:

Unj = anTj + ﬁnzj + €nj (69)

where o, and (3,, are parameters specific to individual n i.e. the effect of z; and z; is assumed to vary over
individuals. Let’s suppose that the value of x; for each individual depends on some observed characteristic
but also unobserved characteristic:

an = pMy, + pin (70)

where M, is some observed characteristic of individual n and p,, is a random variable. Similarly, we can
say that the importance of z; also consists of an observed and unobserved component:

Because i, and 7, are unobserved, the terms 11,7 and 7, 2; become part of the unobserved component of
utility:

Unj = p(Mnxj) + T(Nan) + €nj (72)

where €,; = p,x; + npzj + €,;5. 1t should be obvious that the new error terms €,; cannot be distributed
independently and identically as required for the logit models. Since s, and 7,, enter each alternative, €, is
necessarily correlated over alternatives. Because x; and z; vary over alternatives, the variance of €,; varies
over alternatives, thus violating the assumption of identically distributed errors as well.

The bottom line is that if tastes are expected to vary systematically in relation to observed variables, then
taste variation can be incorporated into logit models. However, if tastes vary at least partly randomly, then a
logit model is a misspecification.

We will not address this last point in any detail here. However, we will come back to it when we discuss discrete time duration
models in a few weeks.
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6.2 Substitution Patterns and the Independence of Irrelevant Alternatives

If the attributes of some alternative improve, then the probability that this alternative is chosen goes up. But
because probabilities need to sum to one, this means that an increase in the probability of one alternative
necessarily means a decrease in the probability of other alternatives. The way in which these probabilities
change is referred to as the pattern of substitution. All of the logit-based models that we have examined -
MNL and CL models — assume a particular pattern of substitution known as the independence of irrelevant
alternatives (ITA).

6.2.1 Whatis IIA

Recall that for any two alternatives ¢ and k, the ratio of logit probabilities is the following:

P €™/ > eV
P eVnk /37 eV
Vi

€ = ¢Vni=Vnk (73)

o eVnk

The key thing to note here is that this ratio does not depend on any alternatives other than ¢ and k. In other
words, the relative odds of choosing ¢ or k are the same no matter what other alternatives are in the choice
set or what attributes these other alternatives have. Because the ratio is independent of alternatives other
than ¢ and £, it is said to be independent from irrelevant alternatives. As you can see, logit models have the
property of IIA. If IIA does not hold, then the estimated coefficients will be inconsistent.

Let’s think of a particular example. Consider an individual choosing whether to vote for the Conservatives
(C) or Labor (L) in the UK during the 1980s. IIA implies that the presence of a third choice or party, the
Alliance (A), should not change the relative probabilities of any single voter choosing between C' and L.

P(OHC, Ly _ Pu(C)H{C, L, A}
Po(DRC LY Pu(L){C, L, A}

(74)

Say there are two parties (C and L) and say an individual voter has a probability of 0.5 of voting for C and
a probability of 0.5 of voting for L. Thus, the ratio of the probability of voting for C and the probability of
voting for L is 1. IIA implies that if a third party enters (A), then the voter must have a probability of 0.33
of voting for C, 0.33 of voting for L, and 0.33 of voting for L since this is the only way of keeping the ratio
between the probability of voting for C and L equal to 1. IIA really becomes a problem when some of the
alternatives in the choice set are seen as substitutes for each other.?”

Consider the famous red-bus-blue-bus example where two transportation choices are exact substitutes for
each other. Suppose an individual has to choose whether to go to work by car or by taking a blue bus. Let’s

21t is important to note that ITA refers to the relative probabilities of individual voters choosing parties. It is possible for ITA to
hold at the individual level, but not at the aggregate level. An example is given by Alvarez and Nagler (1998). You should take a
look at this.
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suppose that P, = Py, = 0.5 such that 1%7 = 1. Now suppose that a red bus is introduced. The probability
that the worker will take the red bus is the same as the probability he will take the blue bus i.e. I%Z =
Pe

o 1s the same whether or not another alternative, such as the

red bus, exists or not; this ratio has to remain 1. The only probabilities for which IJ;be = 1and 1122 Z = 1are
P. = Py, = P, = 0.5, which are the probabilities predicted by logit. The problem is that in reality we
would expect the probability of taking the car to remain the same when a new bus that is identical to the old
bus is introduced. We would also expect the original probability of taking the bus to be split between the two
buses once the second bus is introduced. Thus, what we would expect is P, = 0.5 and Py, = P, = 0.25.
The logit model, because of the IIA property, overestimates the probability of taking either of the buses and

underestimates the probability of taking the car.

In the logit model, it has to be the case that

An incorrect assumption of IIA really has to do with the non-independence of the error terms. Note that even
if ITA is correct in the abstract, it will appear that we have violated it if we omit a variable that is common
to two choices. This is because the omitted variable is being captured in the error terms and making them
appear correlated. In this sense, the problem has less to do with correlated disturbances and more to do with
the fact that there is an omitted variable. Note, though, what this means. IIA is a property of a specific
set of variables and choices - it is not an abstract property of decision makers. This is important because it
means that we should not infer from the results of our models that, say, IIA holds in one country but not in
another?! This is because the reason why IIA appears violated in one county may have to do with the fact
that their model is just not as good as it is in the other country i.e. it omits more relevant variables. A more
general point here is that we don’t want to interpret or infer things from error processes too much because
we know that we can get rid of these errors if we had a better model.

The bottom line here is that IIA will be violated if decision makers perceive alternatives to be substitutes for
each other or if we omit variables that are common to two or more alternatives.

6.2.2 Testing for ITA

One way to think about IIA is that the coefficients should be invariant to which choices are available. This
allows us to conduct an eyeball test of the IIA assumption. In our Dutch example, we have 4 parties. To
rule out a violation of the IIA assumption, we could check to see if the coefficients are the same when we
drop either the Pvda, the CDA, D66, or VVD. Note that we should also check that the coefficients are the
same if we drop combinations of these parties i.e. Pvda and CDA, Pvda and VVD, Pvda and D66, D66 and
VVD, D66 and CDA, and CDA and VVD. IIA assumes that dropping any of these parties or combinations
of parties will not change the coefficients. The Hausman-McFadden test of IIA is essentially a more formal
version of this eyeball test.

Hausman-McFadden Test

The Hausman-McFadden test is based on the comparison of two estimators of the same parameters. One
estimator is consistent and efficient if the null hypothesis is true (i.e. IIA holds), while the second estimator is
consistent but inefficient. For multinomial logit and conditional logit, maximum likelihood is consistent and

2This is essentially what Martin, Quinn and Whitford (1999) do in their analysis.
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efficient if the model is correctly specified. A consistent but inefficient estimator is obtained by estimating
the model on a restricted set of outcomes. If ITA holds and the dropped choices are irrelevant, the estimates
of the parameters should be the same. So the test is:

1. Estimate the full model with all J alternatives included. This produces BF and Vp.
2. Fit arestricted model by eliminating one or more alternatives. This produces B r and V.

3. The following test statistic is asymptotically distributed as a 2 random variable with k& degrees of
freedom where k is the number of elements in the 3 vector:

(Br — Br) Ve — Vil (Br — Br) ~ Xk (75)
To do the Hausman test in STATA, we type:

clogit Y X, group (respid);

est store full;

clogit Y X if vote~=4, group (respid);
hausman . full;

This test looks to see if IIA is violated when we drop alternative 4.

Another formal test of ITA is the Small-Hsiao test. If you have SPOST, you can conduct this test by typing:

clogit Y X, group (respid);
mlogtest, smhsiao

Numerous problems arise with these tests. For example, Long (2001, 191) notes that the Hausman Test
often gives inconsistent results. Similar complaints can be made about the Small-Hsiao test which requires
randomly splitting the sample into two subsamples; the results of the test often depend on how the sample
was divided. Another problem is that the two tests often give conflicting information on whether the IIA
assumption has been violated. These practical limitations led McFadden (1973) to suggest that the assump-
tion of ITA implies that multinomial and conditional logit models should only be used in cases where the
outcome categories “can plausibly be assumed to be distinct and weighed independently in the eyes of each
decision maker.” You might think of moving to discrete choice models that relax or do not require the IIA
assumption. It is to these models that we now turn.
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